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Impact of Trap Depth on the Steady-State and Transient
Photoluminescence in Halide Perovskite Films

Jürgen Hüpkes, Uwe Rau, and Thomas Kirchartz*

Within the field of halide perovskites, trap-assisted recombination is often
considered to be synonymous with first-order recombination, that is, recom-
bination that scales linearly with the charge-carrier concentration. However,
the standard Shockley-Read-Hall statistics naturally predict that trap-assisted
recombination can have any scaling between linear and quadratic with carrier
density, depending on the position of the trap or defect that enables recombina-
tion. In an intrinsic semiconductor, the shallower a trap is, the more the recom-
bination rate will scale quadratically with carrier density, and the more it will
resemble radiative recombination in its behavior in any transient experiment.
Here, the theoretical implications of the trap depth in general and shallow traps
in particular on transient and steady-state experiments applied to halide per-
ovskite samples for photovoltaic or optoelectronic applications are discussed.

1. Introduction

The working principle of photovoltaics relies on the collection
of photogenerated charge carriers at the electrodes. The pro-
cess competing with charge extraction is charge recombination,
which typically proceeds predominantly via nonradiative path-
ways. In most thin-film solar cell materials, the common un-
derstanding is that it is nonradiative recombination via local-
ized states combined with the emission of multiple phonons[1–6]

that is responsible for the majority of the recombination events
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in a working solar cell.[7,8] Thus, it is
crucial to understand and character-
ize recombination via localized states
in any material considered for use
as a photovoltaic absorber material.
In the currently quite popular field

of halide-perovskite photovoltaics, re-
combination is frequently studied with
the toolbox of photoluminescence-based
methods.[9–12] Here, both steady-state
photoluminescence (PL)[13–17] transient
PL[18–21] and even continuous transitions
between these two extremes[19] are highly
popular methods. All PL-based meth-
ods use the photons emitted by radia-
tive recombination as the observable with
the target of quantifying non-radiative

recombination. Radiative recombination is unavoidable in highly
absorptive semiconductors due to detailed balance.[22–26] Nonra-
diative recombination, however, is avoidable and could be sup-
pressed by modifying processes of film preparation,[27–29] by
modifying the chemical properties of interfaces,[30–35] the energy-
level alignment at interfaces[36–39] or even the dielectric properties
of the different layers.[40,41]

In halide perovskites, non-radiative recombination is typically
much less severe than in many other materials that are or have
been under investigation for possible use in photovoltaics[7,42,43]

which has led to the frequently used description of halide per-
ovskites as being defect-tolerant.[44,45] A common explanation for
the high electronic quality of (at least) lead-halide perovskites is
the shallow nature of most intrinsic point defects.[46–48] In the
context of explaining and understanding photoluminescence ex-
periments, it is nevertheless common practice to ignore the trap
depth in the discussion and consider solely deep defects as well
as radiative recombination.[19,49] We have recently shown[50–52]

that this is a poor approximation in many situations, where espe-
cially the photoluminescence transients start to behave in a way
that is inconsistent with frequently-used simplified versions of
Shockley-Read-Hall (SRH) statistics.[53,54]

Here, we explore the implications of the energetic position
of localized states on the performance of perovskite solar cells
and on the steady-state and transient photoluminescence data.
We start with a short discussion of the role of localized states in
non-radiative multiphonon recombination, followed by a sum-
mary of the experimental evidence for shallow traps dominating
recombination in relevant lead-halide perovskite compositions.
Subsequently, we introduce the theoretical description of tran-
sient and steady-state photoluminescence in such a way that trap
depth is explicitly included. Our aim is to provide a description of
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Figure 1. Schematic configuration coordinate diagrams to illustrate different situations for non-radiative recombination. a) Nonradiative band-to-band
recombination in inorganic semiconductors is extremely unlikely due to the need to tunnel isoenergetically from the electronically excited state into a
vibrationally excited state of the electronic ground state.[56] If the parabolas are only vertically offset (no reorganization energy of the defect-free crystal),
this is nearly impossible. b) For a shallow defect, similar arguments would suggest that the transition to the ground state (in this case) is similarly
unlikely. c) If the defect is deeper, the parabola is expected to be more significantly shifted on the x-axis (change the geometry of the crystal more),
consequently leading to a higher likelihood for both transitions from the electronically excited state via the defect to the ground state. d) In case the
semiconductor is anharmonic (the potential energy surfaces are not parabolic anymore), shallow defects may also end up leading to fast recombination.
However, the anharmonicity may also cause the opposite, i.e., make a given transition less likely.

the underlying theory of recombination and photoluminescence
that allows readers with different backgrounds to understand the
implications of shallow defects. Thus, we provide sufficient back-
ground for the article to represent a stand-alone tutorial on re-
combination statistics and their implications for transient and
steady-state photoluminescence in intrinsic semiconductors.

2. Analytical Descriptions of Photoluminescence

2.1. Localized States and Their Role in Recombination

Localized states that are often referred to either as traps or de-
fects occur in the bulk of semiconductors but in higher con-
centrations at grain boundaries and interfaces. These states ac-

celerate recombination as they increase the likelihood of mul-
tiphonon transitions.[55,56] In most inorganic semiconductors,
band-to-band nonradiative transitions are extremely unlikely be-
cause of the negligible wave-function overlap of the electronically
excited state relative to the vibrationally excited electronic ground
state of the system (see Figure 1a). This wavefunction overlap
only increases when states that are absent in the perfect periodic
crystal are introduced into the system. In the presence of such
structural defects, localized states are formed that force the crys-
tal around them into a slightly different geometry. This change
in geometry is the same concept that is referred to as the reor-
ganization energy in molecular semiconductors.[57,58] However,
this change of geometry may be small, as shown in Figure 1b, in
which case the transition probability to the ground state would
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not significantly increase relative to the case of the band-to-band
transition shown in Figure 1a. Alternatively, it could be more sig-
nificant as shown in Figure 1c. Now, nonradiative transitions via
the localized state formed by the defect become possible and start
to reduce the luminescence intensity, open-circuit voltage,[59,60]

and eventually the efficiency of any photovoltaic device. Within
the harmonic oscillator approximation, shallow defects have a
low likelihood of interacting with the band that is further away
from the defect (see Figure 1b).[61] They may trap and detrap one
type of carrier, but they rarely dominate recombination. There-
fore, the common understanding in the field has partly been that
shallow defects exist, but that they do not play an important role
in non-radiative recombination. It was rather the few deep defects
that were thought to dominate recombination.
Lead-halide perovskites, however, are highly anharmonic

semiconductors.[62,63] This implies that the potential-energy sur-
faces calculated from density functional theory calculations of
specific defects differ particularly strongly from the parabolic
shapes[5,6,61,64] predicted by the harmonic oscillator model (see
Figure 1c vs d for schematic examples and Figure 2 for three
concrete examples).[1] The implication of this finding is that the
attempt to infer a likely magnitude of the capture coefficients
purely from the energetic position of a given defect is unlikely
to be accurate.[6] Consequently, we cannot a priori rule out that
there are shallow defects in lead-halide perovskites that also in-
teract efficiently with the band that is energetically further away.
Furthermore, there is evidence from first-principles calculations
(see Figure 2 and Table 1) that there exist specific defects in
metal-halide perovskites that are rather shallow and interact bet-
ter with the band that is energetically further away. One example
is the H-vacancy created by removing H from an N atom exist-
ing, e.g., inmethylammonium.Here, the resulting defect is close
to the valence band but effectively interacts with the conduction
band (see Figure 2c or ref. [1]). Also, other examples have been
reported, such as those discussed in refs. [65] Furthermore, in
more generic descriptions of multiphonon recombination, such
as discussed, e.g., in refs. [5,66–68], a shallow trap would be ex-
pected to be only slightly shifted on the x-axis of the configura-
tion coordinate diagram (see Figure 1b). However, in first prin-
ciples calculations of actual defects (see Figure 2b or ref. [1]),
the shift might be very significant as schematically illustrated in
Figure 1d. The resulting possibility that shallow defects may in-
deed be the dominant path for recombination has important con-
sequences for the way recombination is quantitatively and quali-
tatively analyzed[50,52] and it provides explanations for several ob-
servations in the literature that are difficult to explain otherwise.
These observations include the power law decays that we will dis-
cuss in more detail in the following, but also the observation of
non-radiative bimolecular recombination.[69,70]

An additional question to consider regarding localized states
is their charge state. The two simplest scenarios are acceptor-
like and donor-like defects. An acceptor-like defect is either neg-
atively charged or neutral (−/0). Thus, if an acceptor-like defect
is close to the valence band, it will act as a p-type dopant, mean-
ing that already in thermodynamic equilibrium (no applied volt-
age, no illumination, no temperature gradients), the defect will
be ionized (i.e., negatively charged), thereby creating a hole in
the valence band as a counter charge. A donor-like defect is ei-
ther positively charged or neutral (0/+), implying that if it is situ-

Figure 2. Configuration coordinate diagrams calculated for different hy-
drogen vacancies in perovskites: a) VH(N) depicts a hydrogen vacancy
created by removing hydrogen from a nitrogen atom in FAPbI3. This rep-
resents a rare example of an acceptor-like defect close to the conduction
band. b) Configuration coordinate diagram of a hydrogen vacancy at the C-
atom inMAPbI3. This is an example of a donor-like defect close to the con-
duction band that should, in principle, dope the perovskite already in the
dark without applied bias. c) Configuration coordinate diagram of a hydro-
gen vacancy at the N atom in MAPbI3. This is an example of an acceptor-
like defect below midgap that would be partly ionized in the equilibrium
(i.e., dope the perovskite p-type but not very efficiently).

ated close to the conduction band, it will be empty and therefore
act as an n-type dopant. It creates a free electron whose coun-
tercharge is a positively charged defect. In addition, the so-called
amphoteric defects may have more than two charge states, that
is, positive, neutral, and negative. In this article, we restrict our-
selves to singly charged defects and focus on acceptor-like defects
for the sake of simplicity. Table 1 provides a summary of DFT
calculations of defect states using the Heyd-Scuseria-Ernzerhof
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Table 1. Calculated defect levels in different perovskite materials from the literature. Defect energies significantly lower than mid-gap are marked in
bold. Defects that contribute to doping (acceptor-like defects close to the valence band or donor-like defects close to the conduction band) show the
acceptor/donor column in bold and shallow traps, which only cause photo-doping, have their defect type bold printed.

Material Defect Acceptor/Donor Trap energy Bandgap [eV] Capture coefficients Refs.

EC–ET [eV] ET–EV [eV] 𝛽n [cm
3 s−1] 𝛽p [cm

3 s−1]

MAPbI3 II (+/0) D 0.49 1.01 1.50 [71]

MAPbI3 II (+/0) D 0.51 1.08 1.60 7 × 10−9 [72]

MAPbI3 II (+/0) D 0.57 1.01 1.59 [73]

MAPbI3 II (+/0) D 0.64 0.94 1.58 [74]

MAPbI3 II (0/−) A 0.84 0.74 1.60 4 × 10−8 [72]

MAPbI3 II (0/−) A 1.28 0.30 1.59 [73]

MAPbI3 II (0/−) A 1.35 0.15 1.50 [71]

MAPbI3 II (0/−) A 1.45 0.13 1.58 [74]

MAPbI3 IMA (−/2−) A 0.59 0.91 1.50 [71]

MAPbI3 IMA (0/−) A 1.33 0.16 1.50 [71]

MAPbI3 IMA (+/0) D 0.00 1.58 1.59 [73]

MAPbI3 IPb (+/0) D 0.04 1.55 1.59 [73]

MAPbI3 VH(C) (+(0) D 0.31 1.29 1.59 8 × 10−18 3 × 10−16 [1]

MAPbI3 VH(N) (0/−) A 1.12 0.48 1.59 1 × 10−4 2 × 10−4 [1]

MAPbI3 VI (+/0) D 0.00 1.58 1.59 [73]

MAPbI3 VI (+/0) D 0.08 1.50 1.58 [74]

MAPbI3 VI (0/−) A 0.01 1.48 1.50 [71]

MAPbI3 VPb (−/2−) A 1.44 0.15 1.59 [73]

MAPbI3 VPb (−/2−) A 1.51 0.07 1.58 [74]

MAPbI3 VPb (0/−) A 0.75 0.84 1.59 [73]

MAPbI3 VPb (0/−) A 1.24 0.34 1.58 [74]

MAPbBr3 IBr (+/0) D 1.53 0.73 2.26 [75]

MAPbBr3 IBr (0/−) A 2.14 0.13 2.26 [75]

MAPbBr3 IMA (+/0) D 0.05 2.21 2.26 [75]

MAPbBr3 IPb (+/0) D 0.79 1.47 2.26 [75]

MAPbBr3 VBr (+/0) D 0.03 2.24 2.26 [75]

MAPbBr3 VPb (−/2−) A 2.11 0.16 2.26 [75]

MAPbBr3 VPb (0/−) A 1.63 0.64 2.26 [75]

FAPbI3 VH(C) (0/−) A 0.24 1.28 1.50 3 × 10−8 3 × 10−5 [1]

CsSnI3 VI (+/0) D 0.06 1.24 1.29 3 × 10−14 9 × 10−8 [76]

CsSnI3 VI (0/−) A 0.51 0.83 1.27 2 × 10−6 1 × 10−14 [76]

CsGeI3 VI (+/0) D 0.46 1.14 1.60 5 × 10−8 4 × 10−19 [76]

CsGeI3 VI (0/−) A 0.52 1.08 1.58 3 × 10−30 2 × 10−29 [76]

(HSE)[77] functional with spin orbit coupling, where we state the
type of defect (including charge state), energetic position relative
to either band, as well as the capture coefficients at room tem-
perature (where available). For the use of an HSE functional with
spin-orbit coupling relative to earlier approaches, see, e.g., refs.
[71,74]. We highlighted the respective lower energetic distance
of the defects to either of the two bands. The bold letters in the
“Acceptor/Donor” column indicate moderate or significant ion-
ization of the defect state in equilibrium, leading to doping.
Figure 3 illustrates the different scenarios that can occur re-

garding the charge states of shallow defects. The upper row illus-
trates acceptor-like defects, and the lower row shows donor-like
defects. The first column shows the scenario in which the defects
are primarily neutral, that is, empty in the case of the acceptor-

like trap and occupied with electrons in the case of the donor-
like traps. In this case, the defect density does not lead to signifi-
cant shifts in the equilibrium Fermi level, and the semiconductor
behaves intrinsically in the dark. One potential representative of
such a defect in MAPbI3 is the iodine vacancy, which may create
an acceptor-like defect very close to the conduction band.[71] The
second column illustrates the scenario where the defects do cause
a shift in the equilibrium Fermi level. Panel (e) shows how the
trap energy of an acceptor-like trap affects the equilibrium den-
sity of holes for different trap densities. If the acceptor-like trap is
close to the conduction band (situated at 1.6 eV above the valence
band edge), the equilibrium hole density will be extremely low.
However, if the trap is close to the valence band, the equilibrium
hole density approaches the trap density. Thus, the equilibrium
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Figure 3. a–d): Schematic of a band diagram of a semiconductor with charge carriers generated from optical absorption and from capture of charge
carriers in shallow defects. The diagrams represent acceptor-like defects close to the conduction band a) and valence band (b), and donor-like defects
close to the conduction band (c) and valence band (d). The panels (a) and (c) represent shallow defects that do not contribute to the charge carrier
density in equilibrium but act as traps or recombination centers, while in (b) and (d), the traps contribute to the equilibrium charge-carrier density as
dopants. Panel (e) shows the equilibrium hole density p0 for traps with a certain density NT at a certain energetic position ET relative to the valence
band.

hole concentration can vary by many orders of magnitude for the
same defect density.

2.2. Literature Observations Compatible with Shallow Traps

The main purpose of this paper is to discuss the implications
of a combination of low doping densities[78] and shallow defects
on the recombination statistics of semiconductors in general
and halide perovskites in particular. To motivate this approach,
we will discuss the experimental evidence that supports the ap-
proach in the following section. Figure 4a shows transient PL

data that follows a power-law type decay of the photolumines-
cence after approximately hundreds of nanoseconds, reaching up
to the hundred microsecond mark in one of the datasets.[50] In
semiconductor physics, it is customary to quantify the speed of
recombination via a quantity called the charge carrier lifetime.
The logic of the charge carrier lifetime becomes particularly ob-
vious in situations where recombination is linear in charge car-
rier density. Then, the excess carrier density Δn will decay expo-
nentially with time and a characteristic time constant 𝜏 can be
determined from such a decay. Thus, if Δn(t) = Δn(t) exp(−t∕𝜏),
an exponential fit will provide the time constant 𝜏 which will

Figure 4. a) Normalized PL decays of perovskite films on a double-logarithmic scale. The reference line ϕTPL∝t−2is plotted for comparison. b) Differential
decay time 𝜏diff versus Fermi-level splitting ∆EF corresponding to the decays shown in (a). The reference line 𝜏diff ∝ exp(−ΔEF∕(2kBT)) is shown for
comparison. Figure reproduced from ref. [50] under the terms of the CC-BY 4.0 license. © The authors of ref. [50].
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contain all information on the speed of the decay and thematerial
properties responsible for the decay. However, even in reasonably
well-behaved semiconductors such as crystalline silicon, the ap-
proach of just fitting one exponential to any transient data was
insufficiently complex as usually several recombination mech-
anisms were superimposed.[79,80] Typically, the time constant 𝜏
would depend on the carrier density and thereby on the excita-
tion conditions (e.g., laser power of the pulsed laser used for ex-
citation) and in transient experiments also on the time after the
excitation. Thus, rather than using a single or even multiple ex-
ponential fits to a decay curve, it became more common in the
silicon world to determine the logarithmic derivative of the de-
cay as a function of the excess carrier density.[81] A similar ap-
proach is also useful in the context of halide perovskite films.
Figure 4b shows the associated differential decay times resulting
from the data shown in Figure 4a. The differential decay time is
determined from the photoluminescence flux ϕTPL via

[18]

𝜏diff =
(
−1
2
d ln(𝜙TPL)

dt

)−1

(1)

where t is the time after the laser pulse. The factor 2 considers
the fact that the luminescence flux ϕTPL∝np, which simplifies
to ϕTPL∝n

2 in materials with low doping concentrations such as
halide perovskites. Thus, if we consider the defining equation for
the decay time to be

𝜏diff ≔

(
−
d ln(n)
dt

)−1

= −
n(t)

dn(t)∕dt
(2)

then the equation to determine 𝜏diff from experimental data,must
include a factor 2 as seen in Equation (1). Equation (2) is designed
such that if we apply it to a simple exponential decay of the type
Δn(t) = Δn(t) exp(−t∕𝜏), we would obtain 𝜏diff = 𝜏, i.e., a constant
decay time.
However, given that the decays in Figure 4a are power laws

rather than exponentials, the application of Equation (1) to the
data leads to continuously changing decay times. To understand
how they are changing with injection condition (i.e., with car-
rier density n or Fermi level splitting ΔEF), it is most instruc-
tive to start with a differential equation that eventually produces
a power-law as seen in Figure 4a. This is the case for a differential
equation of the type

dn
dt

= −kn2, (3)

where k is a recombination coefficient of unit cm3/s. The exact
physical mechanism represented by k is not important for the
moment. It could be radiative recombination or, as we will later
see, recombination via sufficiently shallow defects. Currently, we
are only interested in the signatures of such a quadratic differen-
tial equation in the experimental data. Equation (3) can now be
solved either for n(t) or directly for 𝜏diff using the right-hand side
of Equation (2). The former approach yields

n(t) =
n(0)

1 + kn(0)t
, (4)

which is for long times a power-law relation between n(t) and
time t, where n(0) is the carrier density directly after the laser
pulse. IfϕTPL∝n

2 holds, Equation (4) implies that for longer times
(t > (kn(0))−1), ϕTPL∝t

−2 will result, which is indicated by the red
dashed line in Figure 4a. The latter approach to directly solve
Equation (3) for 𝜏diff directly yields

𝜏diff = 1
kn

(5)

which—in the limit of high-level injection (n = p)—leads to
𝜏diff ∝ exp(−ΔEF∕(2kBT)) which is indicated with a red dashed
line in Figure 4b. Thus, we note that the observation of power-
law decays for long times and high laser fluences (high values of
n(0)) directly results in a decay time that scales exponentially with
Fermi-level splitting. An additional observation, discussed in de-
tail in Ref. [50], can be obtained by inserting Equation (4) into
Equation (5) to express the differential decay time as a function
of time rather than the carrier density or Fermi-level splitting.
The result is ref. [50]

𝜏diff = 1
kn(0)

+ t (6)

which implies that for long times (t > (kn(0))−1) or high fluences,
the decay time 𝜏diff ≈ t. This result means that plotting a decay
time as a function of time for a decay that is power law in na-
ture does not result in any information other than that it is in-
deed a power law decay. All information on the material, which
is encoded in the recombination coefficient k, is lost. Thus, in
this paper, we will directly show the decay time as a function of
Fermi-level splitting to avoid this information loss.
The observation of power-law decays, as shown in Figure 4,

is not often reported in literature as most data are not plotted
on double-logarithmic scales and do not have sufficient signal-to-
noise ratio and dynamic range to observe the difference between,
for instance, a bi-exponential decay and a power-law decay. Fur-
thermore, the “1” in the denominator of Equation (4) is a cru-
cial term in understanding the PL decay in systems that approxi-
mately obey Equation (3). Only once the “1” is negligible relative
tokn(0)t, the decay really follows a power law (i.e., a straight line
in Figure 4a). For situations where the opposite is true, the decay
will be difficult to distinguish in its shape from the beginning of
an exponential decay. The reason is that the Taylor expansion up
to the first-order term of Equation (4) gives

n(t) =
n(0)

1 + kn(0)t
≈ n(0)

(
1 − kn(0)t

)
(7)

This result is notably functionally the same as that for any ex-
ponential decay (exp (−x) ≈ 1 − x for small values of x). Thus,
whether any given decay is rather exponential or power law in its
nature requires a certain dynamic range and time interval to dis-
tinguish. Especially in those situations, where the decay is still
approximately linear in time, the solutions of dn∕dt = −kn2 and
dn∕dt = −n∕𝜏 would not differ at all in their functional depen-
dence on time.
Figure 4 shows decays that were measured using a gated CCD

camera for photon detection. Thanks to its internal amplifica-
tion, it is straightforward to measure with a sufficient dynamic

Adv. Energy Mater. 2025, 15, e03157 e03157 (6 of 21) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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Figure 5. a–c) Transient PL measurements on different perovskite layer stacks, including a hole transport layer in each case and an electron transport
layer in the case of panel (c). Each of the samples is based on a glass/ITO substrate that additionally contains the layers, as denoted in the lower left
corner of each figure. d–f) Differential decay time versus quasi-Fermi-level splitting for three laser intensities and different samples that always include
the one shown in the upper row and one additional sample not shown there. Figure reproduced from ref. [82] under the terms of the CC-BY 4.0 license.
© The authors of ref. [82].

range to observe the condition t > (kn(0))−1 that facilitates identi-
fying a decay originating from a differential equation of the type
dn∕dt = −kn2. The most frequently used type of photon detection
for transient PL measurements is, however, the time-correlated
single-photon counting technique. This technique does not easily
enable dynamic ranges of larger than four orders of magnitude
in luminescence. However, it is relatively simple to measure sev-
eral times with different initial laser fluences and combine the
resulting data.
In Figure 5a we have added a guide-to-the-eye line for the

power law decay, which is well followed by the experimental data
for long times. In addition, we show fits to these curves based
on a bi-exponential decay and a power law, which includes the
constant mentioned in Equation (7). The frequently used biex-
ponential decay may describe the experimental decay under cer-
tain restrictions of short lifetimes of deep traps, but we clearly
demonstrate that the biexponential curve drops more rapidly and
cannot describe the decay for long times in this case. This fact
is often overlooked in the literature, because many experimental
data are available with limited dynamic range only (see Figure 1b
in ref. [52]). Futhermore, data in the literature is frequently stud-
ied on semilogarithmic plots with a linear time axis, where de-
viations from multiexponential fits are more difficult to iden-

tify than in the rarely used double-exponential depictions of the
data.
Figure 5 illustrates the impact of laser fluences on the appear-

ance of (a-c) PL decays and (d-f) differential decay times of the dif-
ferent layer stacks.[82] All samples were deposited on a glass/ITO
substrate and additionally contained a hole transport layer (HTL)
and, in the case of the last column of figures, an electron trans-
port layer (ETL). In the first row (a–c), the PL decays are shown
such that the measurements performed at lower fluences (indi-
cated by the labels 1OD and 2OD) are offset in luminescence
intensity by one order of magnitude (1OD) and two orders of
magnitude (2OD) and offset in time such that they fit best to the
data from the higher fluence. This shows that these multilayer
structures also exhibit non-exponential decays that roughly fol-
low a power law at longer times. The second row of panels (d–f)
shows the resulting differential decay times. These show in parts
a double S-shape (panel d) and in parts a rather straight line af-
ter an initial steep region at higher values of ΔEF. The steeper
region at high ΔEF, i.e., earlier times, corresponds primarily to
an initial decay of the PL due to either trapping or diffusion of
charge carriers. The region at lower ΔEF and later times corre-
sponds to the region dominated by recombination. The different
fluences always show a fairly consistent behavior at later times,

Adv. Energy Mater. 2025, 15, e03157 e03157 (7 of 21) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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while the decay times at early times change rapidly to approach
the common trend at later times. None of the datasets shows
a classical exponential decay, as one would expect from a deep
trap. Thus, the essence of Figures 4 and 5 is that the normal sit-
uation in many lead halide perovskite absorber layers and layer
stacks is non-exponential recombination with decay times that
exhibit a carrier-density-dependent trend over a significant part
of the observed range. Such non-exponential decays or continu-
ously changing decay times have also been reported using differ-
ent experimental methods such as photo-Hall measurements,[83]

quasi-steady-state photoconductivity decay,[84] and transient mi-
crowave conductivity.[85,86]

The question now is which physical mechanisms are consis-
tent with the observed behavior. In the following, we will show
that the data are consistent with recombination via defect states,
where the defects are quite close to one of the band edges but not
at all close to midgap. This can lead to a behavior that can be ap-
proximately described by Equation (3). Thus, we will now delve
into the impact of the energetic positions of traps or defects on
the typical observables in steady-state and transient photolumi-
nescence.

3. Analytical Descriptions of Photoluminescence

3.1. Steady-State Photoluminescence

Throughout the article, we will continuously compare steady-
state with transient photoluminescence and choose a way to rep-
resent the results of the calculations that wewill explain in the fol-
lowing. For steady-state PL, we chose the external luminescence
quantum efficiency as a figure of merit. The luminescence quan-
tum efficiency is defined as

Q lum
e =

q𝜙em

Jrec
(8)

where ϕem is the emitted photon flux in units of 1/(cm2s), q
is the elementary charge, and Jrec is the recombination current
density. The luminescence quantum efficiency is defined such
that higher values always imply less nonradiative recombination,
which is nearly always beneficial for any photovoltaic device. Only
in the specific case of exciton splitting in organic,molecular semi-
conductors, lower luminescence-quantum efficiencies may indi-
cate better exciton splitting, which is good for photovoltaic func-
tionality. However, in the context of lead-halide perovskites con-
sidered for photovoltaic applications, exciton splitting is normally
of no concern as free carriers are created at room temperature.
For the case of a film on glass, where parasitic absorption can

be assumed negligible, we can rewrite Equation (8) to represent
rates instead of fluxes and arrive at

Q lum
e =

krad
(
1 − pr

)
np

RSRH + krad
(
1 − pr

)
np + RAug

(9)

Here, krad is the radiative recombination coefficient, pr is the
reabsorption probability,[87] RSRH is the SRH recombination rate,
and RAug is the Auger recombination rate. To simplify the equa-
tion, it is possible to replace krad(1- pr) with an external radiative

recombination coefficient ke,rad = krad(1- pr), which is already cor-
rected for the effect of reabsorption and photon recycling.[88,89]

Our aim is to understand the effect of the energetic position of
the trapwithin the bandgap on the figures ofmerit, such as the lu-
minescence quantum efficiency. Within the logic of Equation (9),
the energy position of the trap enters via the SRH recombination
rate, which can be written in steady state as Ref. [53]

RSRH =
np − n0p0(

n + n1
)
𝜏p +

(
p + p1

)
𝜏n

(10)

where n1 = NC exp(−
EC−ET
kBT

), p1 = NV exp(
EV−ET
kBT

), 𝜏n =
(𝛽nNT)

−1, 𝜏p = (𝛽pNT)
−1 n0, and p0 are the equilibrium electron

and hole concentrations, 𝛽n and 𝛽p are the capture coefficients
of electrons and holes, EC is the conduction band edge, EV is the
valence band edge, ET is the trap position in energy, NC is the
effective density of states in the conduction band,NV the effective
density of states in the valence band, and NT is the trap density.
The trap position, the main topic of this article, is encoded in
Equation (10) in the values of n1 and p1, a nomenclature going
back to the original article by Shockley and Read.[53] These should
not be mistaken for actual concentrations of charge carriers that
physically exist somewhere in the semiconductor. Instead, n1
and p1 are abbreviations of unit carrier density that appear in
the SRH equation if written in the form seen in Equation (10)
and that consider the detrapping of charge carriers from a trap
to the closest band. They can be understood as the hypothetical
concentrations of free electrons and holes, assuming that the
Fermi level is at the trap level. As understanding Equation (10)
primarily requires one to distinguish between cases, where the
Fermi level is above or below the trap level, these situations can
be conveniently expressed by inequalities of the type n ≪ n1
meaning that the Fermi level is below the trap level and n ≫ n1
meaning that the Fermi level is above the trap level.
As n1p1 = n0p0, only one of the two quantities (n1 or p1) can

be of comparable magnitude to n and p during the operation
of a solar cell (where np ≫ n0p0). Therefore, for the remainder
of the article, we may assume that the trap is either midgap or
above midgap, which would imply that we must only consider n1
but not p1. Furthermore, as lead-halide perovskite layers typically
have extremely low doping densities,[78] there will be situations
where it is sensible to simplify Equation (10) using the approxi-
mation n = p. In this scenario, we can simplify Equation (10) to

RSRH ≈ n2(
n + n1

)
𝜏p + n𝜏n

(11)

We can now also write an equation for the external lumines-
cence quantum efficiency that relates parameters such as the life-
times 𝜏n and 𝜏p as well as the trap depth ET directly to Q

lum
e . Ne-

glecting Auger for simplicity, we arrive at

Q lum
e =

ke,radn
(
𝜏n + 𝜏p + 𝜏p

n1
n

)
1 + ke,radn

(
𝜏n + 𝜏p + 𝜏p

n1
n

) (12)

Thus, at high values of n, where the 1 in the denominator is
negligible, Q lum

e approaches unity. For sufficiently low values of
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n, however, the luminescence quantum efficiency will saturate to
a value Q lum

e = ke,radn1𝜏p∕[1 + ke,radn1𝜏p] determined by the trap
depth.

3.2. Transient Photoluminescence

The figure of merit, which we primarily study in the context of
transient PL, is the differential decay time. We define the differ-
ential decay time via (see also Equation 1)

𝜏diff =
(
−1
2
d ln(𝜙TPL)

dt

)−1

(13)

that is, via a logarithmic derivative of the PL flux with respect
to time. To better understand the implications of the definition
given by Equation (13), let us briefly discuss a simple case. For a
deep defect and again neglecting Auger recombination, the dif-
ferential equation determining the electron concentration in an
intrinsic semiconductor (n = p) is given by

dn
dt

= −R(n) = −ke,radn2 −
n

𝜏n + 𝜏p
(14)

Furthermore, we know that ϕTPL∝n
2. Hence, 𝜏diff =

(− 1
2

d ln(𝜙TPL)

dt
)−1 = − n

dn∕dt
and we therefore find[90,91]

𝜏diff = − n
dn∕dt

= 1
ke,radn + 1∕

(
𝜏n + 𝜏p

) (15)

Thus, for high values of n, we obtain 𝜏diff = (ke,radn)
−1, while

for low values of n, we find 𝜏diff = 𝜏n + 𝜏p. Thus, the definition
given by Equation (13) is designed such that it provides the sum
of the two SRH lifetimes as the output for the differential decay
time if the SRH recombination dominates. The factor 2 in Equa-
tion (13) takes care of the fact that perovskites are intrinsic semi-
conductors and ϕTPL∝n

2. Thus, for methods such as transient-
absorption spectroscopy or transient photoconductivity, where
the observed signals are proportional to n, a similar definition
as given by Equation (13), but without the factor 2, would lead
to a consistent treatment. A key simplification in Equation (14)
is that we describe the kinetics of charge carriers with one or-
dinary differential equation. In particular, we have not (yet) in-
cluded an equation that considers the change in the density nT
of the trapped electrons. We also do not consider diffusion, any
form of detrapping, and assume that electrons can recombine,
but they can never be re-emitted into the conduction band from a
trap. All these assumptions are currently only applied for didactic
reasons to provide an intuitive understanding of Equation (13).
There are now two levels of complexity in the description of

(shallow) traps that we can add. The first level would still be en-
tirely analytical and assumes that we have only a small density
of shallow defects; thus, the charge trapped in these defects does
not significantly change over time. Mathematically, this implies
that dnT/dt << dn/dt and nT << n. In this case, the key assump-
tions used to derive the steady-state Equations (10) and (11) are
still given, and we can include the impact of detrapping by only
considering n1. The implication here is that detrapping does not

significantly affect n or p but slows down recombination by in-
creasing the numerator in Equation (11). Because detrapping is
fast for a shallow acceptor-like trap close to the conduction band,
the trap will be mostly empty. Thus, there are few electrons in
the trap that can recombine with holes, thereby slowing down re-
combination. In this case, we arrive at a differential decay time
given by

𝜏diff =
𝜏n + 𝜏p + 𝜏p

n1
n

1 + ke,radn
(
𝜏n + 𝜏p + 𝜏p

n1
n

) =
Q lum
e

ke,radn
(16)

As we used the steady-state solution of the SRH recombination
rate to derive 𝜏diff, it is obvious that the information contents of
𝜏diff andQ

lum
e are basically identical. In a sample where the above-

discussed approximations are valid, the only benefit of measur-
ing both quantities would be to determine ke,radn = Q lum

e ∕𝜏diff .

3.3. Results for Low Trap Densities

We will now illustrate the implications of the analytical equa-
tions derived so far for low densities of trap states and show
their limitations. We will initially use the luminescence quan-
tum efficiency Q lum

e as the quantity representing a steady state
experiment and the differential decay time representing a tran-
sient experiment. Note that for the case of low trap densities,
the information content is similar. Thus, Figure 6 shows the cal-
culated luminescence quantum efficiency Q lum

e and differential
lifetime as a function of the quasi-Fermi level splitting ΔEF for
(a, b) deep defects with varying lifetime and (c,d) for a varia-
tion of the trap depth ET. Here, the differential lifetime is cal-
culated using the analytical formula (solid lines) after Equa-
tion (16). The dashed lines represent the calculated limit for long
decay times, and the dotted lines represent the numerical cal-
culations of the decay. The simulation parameters are found in
Table 2.
Figures 6a and b are primarily an illustration of Equations (12)

and (15). The luminescence quantum efficiency for a deep
trap follows a simplified version of Equation (12), whereby the
term with n1 can be neglected. We therefore obtain Q lum

e =
ke,radn(𝜏n + 𝜏p)∕[1 + ke,radn(𝜏n + 𝜏p)] which approaches unity for
high carrier densities n. For low values of n, the lumines-
cence quantum efficiency just followsQ lum

e = ke,radn(𝜏n + 𝜏p), i.e.,
it increases linearly with n. This is equivalent to saying that
kBTln(Q

lum
e ) ∝ ΔEF + const., i.e., on a semilogarithmic plot of

Q lum
e versusΔEF, the increase will appear as a straight line as seen

in Figure 6a. The longer the SRH lifetime (𝜏n + 𝜏p), the more
the transition from the linearly increasing region to the region
where Q lum

e ≈ 1 is shifted toward lower charge carrier densities
or Fermi-level splittings ΔEF.
The differential decay time shown in Figure 6b follows the

equation 𝜏diff = (ke,radn + 1/(𝜏n + 𝜏p))
−1 (see Equation 15). For

high values of the carrier density n and the Fermi-level splitting
ΔEF, radiative recombination will dominate and 𝜏diff = (ke,radn)

−1

will decrease with increasing n. For low values of the carrier den-
sity n and the Fermi-level splitting ΔEF, SRH recombination will
dominate, and the decay time will saturate to a constant value
given by 𝜏diff = 𝜏n + 𝜏p. For both Figures 6a,b, the trap is assumed
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Figure 6. a,c) External luminescence quantum efficiency Qe
lum and b,d) differential decay time 𝜏diff as a function of the quasi-Fermi level splitting ΔEF

for the variation of (a,b) the lifetime of a symmetric, deep trap and (c,d) for the variation of the energetic distance of the trap to the conduction band ET.
The trap density was rather low at NT = 1014 cm−3. Note that for diminishing trap densities, the numerical solutions approach the analytic solutions.
Simulation parameters are presented in Table 2.

to be perfectly midgap (i.e., at 0.8 eV distance to both conduction
and valence band, assuming a 1.6 eV bandgap). Thus, the trap
position is so far of no relevance as long as the trap is deep. This
means that it doesn’t matter for these calculations whether the
trap is at 0.8 or 0.85 eV from the valence band edge as long as it
is inside the two Fermi levels for electrons and holes within the
range of Fermi-level splittings shown. This can be rephrased in
terms of carrier densities: The position of the trap does not mat-
ter as long as n and p are higher than n1 and p1 for all carrier
densities shown in the figure.
Figure 6c,d change the position of the trap in such a way that

these conditions are violated. We are moving the trap toward the
conduction band such that n1 becomes a relevant term in Equa-
tion (10). Instead of two regions (increasing and constant) for
Q lum
e versus ΔEF, we now observe three regions (constant, in-

creasing, and constant again). From low to high values of ΔEF,
the regions can be understood from Equation (12) and are given
byQ lum

e = ke,radn1𝜏p∕[1 + ke,radn1𝜏p] for lowΔEF, then a transition
region that follows the same trajectory (Q lum

e = ke,radn(𝜏n + 𝜏p))
independent of trap depth (i.e., independent of n1), and finally
the saturation at Q lum

e ≈ 1.
Correspondingly, also the differential decay time will show

three regions: 𝜏diff = n1
n
𝜏p∕[1 + ke,radn1𝜏p] at low ΔEF, followed by

a constant decay time independent of trap depth (𝜏diff = 𝜏n + 𝜏p)
and finally the radiative-recombination limited decay time given
by 𝜏diff = (ke,radn)

−1. Notably, the constant intermediate region al-
ways provides the same decay time, but the range in which this
decay time is valid changes dramatically with trap depth. The
shallower the trap, the smaller the intermediate region, where
𝜏diff = 𝜏n + 𝜏p.

Table 2. Parameters used for the simulations: Trap energy ET relative to the valence band with trap density NT, capture coefficients for electrons 𝛽n
and holes 𝛽p, pulse energy equivalent to an initial excess charge density n(0). The following parameters were kept constant: Eg = 1.6 eV, NC = NV =
2.2 × 1018 cm−3, ke,rad = 1.5 × 10−10 cm3s−1.

Figure ET [eV] NT [cm
−3] 𝛽n [cm

3s−1] 𝛽p [cm
3s−1] 𝜏n,p [μs] n(0) [cm−3] n1 [cm

−3] p1 [cm
−3] comment

3(e) var var – – – 0

6 (a,b) 0.8 1014 var var var 1018 7500 7500 deep

6 (c,d) var 1014 1 × 10−8 1 × 10−8 1 1018 Shallow,
low density

9 var 1018 2 × 10−12 2 × 10−12 1 1018 Shallow,
high density

11 var 1018 2 × 10−12 2 × 10−12 1 1018 Shallow,
high density

13 1.5 1018 2 × 10−12 2 × 10−12 1 var 4.6 × 1016 1.2 × 10−7 Shallow,
high density
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4. Charge Neutrality and Steady State
Photoluminescence

4.1. Acceptor-Like Traps Above Midgap

Equation (12) for the luminescence quantum efficiency has been
derived for the assumption n = p. While lead-halide perovskites
show only low doping densities in the dark,[78,92] it is unlikely
that shallow traps would contain exactly as much positive charge
as they contain negative charge. Thus, we must consider the
possibility that in semiconductors with sufficient densities of
shallow traps, discrepancies between electron and hole densities
show up under illumination. This phenomenon has been termed
photodoping, and there is some evidence that it exists in halide
perovskites.[49,93] The first treatment of photodoping in the con-
text of halide perovskites is by Stranks et al.[20] who developed a
model based on SRH statistics that included excitons and more
notably also the charge neutrality condition. The inclusion of the
latter was decisive the reproducing features observed in transient
and steady-state experiments and led the authors to conclude
that there could be a large density of trapped electrons whose
charge would then be counterbalanced by an approximately equal
density of free holes. The concept was used to explain obser-
vations such as the photoconductivity of halide perovskites.[94]

An important further step was the observation by Feldmann
et al.[49] that transient PL decays (signal ∼ np) and transient ab-
sorption decays (signal ∼ n+p) were showing a behavior that
was, for all mixed halide samples, inconsistent with the assump-
tion that n = p. Thus, given the intrinsic nature[78] of the lead-
halide perovskites in the dark, this was also a strong indication
of photodoping. This observation was subsequently explained via
lateral bandgap inhomogeneities, e.g., originating from halide
segregation, a phenomenon that is unique to mixed halide sam-
ples. This photodoping hypothesis, which was restricted in its ap-
plicability to stoichiometries that could show bandgap variations,
was subsequently questioned by Das et al.[93] based on an esti-
mate of the impact of the measured bandgap variations on the
recombination rates. Furthermore, it is also counter to observa-
tions of power law PL decays over many orders of magnitude in
mixed andmono-halide perovskites, as shown in Figure 4. While
the power law behavior is no direct indication of photodoping, the
attempt to model both steady-state and transient PL is discussed
in ref. [52] indicates that photodoping is needed to quantitatively
reproduce the data. Finally, novel spectroscopic methods such as
the pulse-burst transient photoluminescence variant developed
by Marunchenko et al.[95,96] shows that halide perovskites store
significant densities of charge carriers, which implies that they
most likely also store significant densities of charge (it would be
unlikely that the trapped negative and trapped positive charges
were exactly equal in density).
In the following, we will illustrate some of the consequences

of photodoping on the PL quantum efficiency. One peculiar re-
sult of photodoping is that the luminescence quantum efficiency
will actually increase with trap density (and therefore increasing
effect of photodoping) if the SRH lifetimes are kept constant. To
calculate what happens with photodoping, we have to consider
the charge neutrality equation. This implies that we must make
an assumption about the charge state of the trap. We could for in-

stance, assume that the trap was acceptor-like, implying that its
charge state is negative if occupied with an electron and neutral
if empty. In this case, charge neutrality dictates that n + nT = p.
If the defect was donor-like, the possible charge states would be
neutral if occupied and positive if empty. In this case, the con-
dition is n + nT = p + NT. As we are considering traps above
midgap for simplicity, donor-like traps would lead to some de-
gree of n-type doping, while acceptor-like defects would not lead
to a significant level of doping and are therefore more consistent
with experimental observations.[78] Thus, our default condition
for the remainder of the article will be acceptor-like defects above
midgap.
In the case that n and p can differ from each other, the lumi-

nescence quantum efficiency in the presence of an acceptor like
trap above midgap is given by

Q lum
e = 1

1 + 1
ke,rad((n+n1)𝜏p+p𝜏n)

(17)

We could now give n as a variable, which would require us to
work out the hole density p from the charge neutrality condition.
For this, we would have to calculate the density of trapped elec-
trons from SRH statistics, which gives

nT =
n𝜏pNt((

n + n1
)
𝜏p + p𝜏n

) (18)

for the present case. From Equations (17), (18) and the charge
neutrality condition (n + nT = p), we can eliminate p, determine
n as the (somewhat lengthy) solution of a quadratic equation, and
reinsert the result into Equation (17) to calculate Q lum

e . We pro-
vide the solution of this as a short MATLAB script to the inter-
ested reader. The result can be seen in Figure 7. Figure 7a shows
the situation that has already been shown in Figure 6c and that
represents a relatively low trap density NT = 1014 cm−3, whereby
the trap position ET is varied from 0.1 eV distance to the conduc-
tion band edge (black line) to 0.4 eV distance (green line). The
capture coefficients for electrons and holes are equal and set by
the condition that 𝜏p = 𝜏n = (𝛽nNT)

−1 = 1 μs. Figures 7b and 7c
show the situations of increasingly high trap densities, whereby
the SRH lifetimes are always kept at 1 μs, i.e., higher trap densi-
ties always mean lower capture coefficients such that their prod-
uct stays constant. Despite the constant SRH lifetimes, the lumi-
nescence quantum efficiencies do change for a given trap depth.
The higher the trap density, the higher the luminescence quan-
tum efficiency will be for a given trap depth. This is due to higher
asymmetries[40,41,97] between electron and hole densities that lead
to lower non-radiative recombination rates at a given np product
and a given set of SRH lifetimes 𝜏p = 𝜏n = 1 μs. In this situation,
the shallow traps are not improving the luminescence. They are
the only factors that reduce the luminescence below 1. However,
for the rather theoretical assumption of a given SRH lifetime of a
shallow trap, it is better if there is a high density of shallow traps
as opposed to a low density, as the photodoping effect of the shal-
low traps mitigates the detrimental effect of recombination via
these same traps.
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Figure 7. Effect of trap density and trap depth on the luminescence quantum efficiency assuming equal charge carrier lifetimes 𝜏n and 𝜏p (each 1 μs).
Panels (a) to (c) show a continuously increasing trap density ranging from NT = 1014 cm−3 in (a) to NT = 1018 cm−3 in (c). Interestingly, an increase
in trap density that coincides with a proportional decrease in capture coefficients (𝜏p = 𝜏n = (𝛽nNT)

−1 = 1 μs) leads to higher luminescence quantum
efficiencies once the shallow traps become charged and thereby lead to asymmetries in electron and hole densities (photodoping). The less shallow the
trap, the bigger the effect, as the less shallow traps are more likely to be filled with electrons for a given Fermi-level splitting.

4.2. Acceptor-Like Traps Below Midgap

So far, we have discussed the impact of acceptor-like traps above
midgap, i.e., traps that do not lead to significant doping in ther-
modynamic equilibrium, as the traps are above the Fermi-level
and therefore empty and uncharged. Only under the applica-
tion of forward bias or under illumination, the traps could fill
to such a degree that their charge would start to matter. In the
following, we also want to briefly cover the inverse situation of
acceptor-like defects below midgap, which would be equivalent
to studying donor-like defects above midgap. These two combi-
nations represent situations where, depending on the exact depth
of the trap, the traps are partly or even completely charged already
in thermodynamic equilibrium. Figure 8 presents the analogous
simulation to Figure 7, where the traps are now below midgap
and still acceptor-like. As the charge state of the traps only af-
fects the equations via the charge-neutrality condition (n +nt =
p for acceptor-like traps), Figure 8a looks identical to Figure 7a.
Here, the distance to the next band affects the equations, but the
charge state does not because of the low defect density (NT =
1014 cm−3). The higher the trap density, the more the result di-

verges from the one seen in Figure 7. The strongest effect nat-
urally occurs for the highest trap density shown in Figure 8c.
If we compare Figures 7c and 8c for equal trap depth (mea-
sured to the nearest band edge), we note that in Figure 8c, the
luminescence quantum efficiency reaches a plateau for low val-
ues of ΔEF much quicker, i.e., the transition region between the
plateau at high and low ΔEF spans a smaller range in ΔEF. The
value of Q lum

e at the plateau can be calculated analytically, which
we will illustrate in the following to enable the reader to better
understand the trends in Figure 8. In the case dominating in
Figure 8c, the luminescence quantum efficiency can be written
as

Q lum
e = 1

1 + 1
ke,rad𝜏n(p+p1)

(19)

where we neglected both n and n1. Note that n is negligible rela-
tive to p because of the doping effect of the acceptor-like traps and
n1 is negligible relative to p1 because the traps are below midgap.
For low values ofΔEF, Equation (19) predicts a plateau as the only

Figure 8. Same as Figure 7 but for the case of acceptor-like defects close to the valence band. Effect of trap density and trap depth on the luminescence
quantum efficiency assuming equal charge carrier lifetimes 𝜏n and 𝜏p (each 1 μs). Panels (a) to (c) show a continuously increasing trap density ranging
from NT = 1014 cm−3 in (a) to NT = 1018 cm−3 in (c). Panel (a) shows the same result as Figure 7a because for low densities, only the trap depth (to
the nearest band) but not the density matters. Toward higher densities, the curves show a clearly visible plateau toward low values of ΔEF that is given
by the combination of Equations (19) and (21).
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variable (namely p) also assumes a constant value at low ΔEF.
This constant value is given by the condition

p = nT =
p1𝜏n

𝜏n
(
p + p1

) (20)

where we assume again charge neutrality and that we can neglect
n and n1. Equation (20) is a quadratic equation for p that can be
solved to give

p (n ≪ p) = 1
2

(
p1 +

√
p21 + 4p1Nt

)
(21)

Reinserting Equation (21) into Equation (19) provides an an-
alytical solution for the constant low ΔEF plateau of the lumi-
nescence quantum efficiency. This plateau primarily depends
on p1 and thereby on the trap depth and additionally on the
trap density, which explains the shift of the plateau between
Figure 8b,c. As higher values of p increase Q lum

e if every-
thing else stays constant, the increase in trap density (simi-
lar to an increase in doping density) increases Q lum

e as already
observed in the context of Figure 7. This observation heavily
rests on the assumption of both Figures 7 and 8 that the elec-
tron and hole lifetimes stay the same when the trap density
changes.

5. Numerical Descriptions of Transient
Photoluminescence

We have already noted in the discussion of Figure 6 that even
for small trap densities, there is always a point on the ΔEF
axis, where the trap density is no longer small compared to
the free electron and hole density. Thus, to theoretically de-
scribe the effect of shallow traps on transient experiments, we
need to be able to also understand the more general situa-
tion, where the conditions dnT/dt ≪ dn/dt and nT ≪ n are not
fulfilled. Now, we must leave the realm of analytical solutions
and find a numerical solution to the time-dependent differential
equations

dn
dt

= −Rn = −Rrad − Rnt = −ke,radnp − 𝛽nn
(
NT − nT

)
+ ennT (22)

for the electron density n,

dp
dt

= −Rp = −Rrad − Rpt = −ke,radnp − 𝛽ppnT + ep
(
NT − nT

)
(23)

for the hole density p, and

dnT
dt

= 𝛽nn
(
NT − nT

)
− 𝛽ppnT − ennT + ep

(
NT − nT

)
= Rnt − Rpt (24)

for the density nT of trapped electrons. Note that in Equa-
tions (22)–(24), we have used the rates Rnt, Rpt, and Rrad for the
exchange of electrons between the conduction band and the trap,
for the exchange of holes with the traps, and for radiative recom-
bination, respectively. The total rate for the electrons or holes read

Rn = Rrad + Rnt and Rp = Rrad + Rpt. With these definitions, we
can rewrite Equation (13) as

𝜏diff =
(
−1
2
d ln(𝜙TPL)

dt

)−1

=
(
−1
2

d ln(ke,radnp)

dt

)−1

= −2
(
1
n
dn
dt

+ 1
p
dp
dt

)−1

= 2
(
Rn

n
+
Rp

p

)−1

(25)

Owing to the detailed balance, the rates for the capture
and emission of electrons and holes depend on each other.
Therefore, Equations (22) to (24) can be rewritten, knowing
that

en = 𝛽nNC exp
(
ET − EC
kBT

)
= 𝛽nn1 (26)

and

ep = 𝛽pNv exp
(
Ev − Et
kT

)
= 𝛽pp1 (27)

Using Equations (22)–(27) in combination with charge neu-
trality, we can now simulate transient PL decays and the asso-
ciated differential decay times as a function of carrier density
or quasi-Fermi level splitting. However, it is also possible to de-
rive approximate relations for situations not captured by Equa-
tion (16). These are situations where detrapping makes a sig-
nificant contribution to the decay, which typically implies the
presence of a high density of shallow traps. In the following,
we study a situation in which an electron in a shallow trap
(close to the conduction band edge) interacts faster with the
electrons in the conduction band than with the holes in the va-
lence band. Furthermore, we assume the trap to be close to the
conduction band and hence mostly empty of electrons. In this
case, the last two terms on the right-hand side of Equation (22)
should be zero, i.e., − 𝛽nnNT + 𝛽nn1nT = 0 This condition is
satisfied if n = n1nT/NT Thus, the concentration of free elec-
trons is proportional to the concentration of trapped electrons
(n∝nT). If we look at Equation (24), we notice that the terms de-
scribing the interaction with the conduction band will be bal-
anced out for (−𝛽nnNT + 𝛽nn1nT = 0), while the term ep(NT −
nT) ≈ 0. As we are in the situation, where n ≪ nT and n +
nT = p and n + nT = p, the hole density and the density
of trapped electrons must be identical (nT = p) due to charge
neutrality. Hence, we can also write dnT∕dt = −n2T∕(NT𝜏p) −
(ke,radn1pnT)∕NT . Thus, we already observe that we are dealing
with a decay of trapped electrons that is quadratic in the trapped
electron density. We now calculate the differential decay time
via

1
𝜏diff

= − 1
2

d𝜙TPL∕dt
𝜙TPL

= − 1
2

pdn∕dt+ndp∕dt
np

≈ − dnT∕dt
nT

= (1+ke,rad𝜏pn1)nT
NT𝜏p

(28)

For convenience, it is possible to rewrite Equation (28)
in terms of the free carrier densities or the quasi-Fermi
level splitting by eliminating the density of trapped
carriers via n = n1nT∕NT and nT = p. We then arrive
at
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Figure 9. a) Differential decay time 𝜏diff and b) recombination coefficient k as a function of the quasi-Fermi level splitting ΔEF for high trap density
NT = 1018 cm−3 and the variation of the energetic trap position ET relative to the conduction band. Solid lines represent the transients based on numeric
calculations; the dashed lines represent Equation (29), and the dash-dotted lines in (b) represent Equation (32). The dotted lines show the decay for
simple radiative recombination.

𝜏diff ≈ 𝜏p

√
n1NT

np
1

1 + ke,rad𝜏pn1

= 𝜏p

√
n1NT

ni

1
1 + ke,rad𝜏pn1

exp
(
−

ΔEF
2kBT

)
(29)

where ni =
√
n0p0 is the intrinsic carrier density. Thus, we note

that the differential decay time still scales exponentially with the
Fermi level splitting in the same way as it does for a low concen-
tration of shallow defects or for radiative recombination. How-
ever, the prefactors are different. While for low defect densities,
the differential decay time approaches 𝜏diff = 𝜏p

n1
n
= 𝜏p

n1√
np
(see

Equation (16)), for high defect densities the lifetime increases by
a factor

√
n1NT∕n1 =

√
NT∕n1 if we neglect the terms with ke,rad

for simplicity.
Figure 9 shows the impact of the trap depth on transients for

a high trap density NT = 1018 cm−3. The transients are calculated
numerically from rate equations (solid lines) and by using ana-
lytic formulas for low quasi-Fermi level splitting (a, dashed lines)
after Equation (29). As predicted by Equation (29), the decay times
are proportional to exp(−ΔEF∕2kBT), which leads to continuously
changing decay times that only show an intermediate plateau.
Thus, it is valid to question the use of a decay time as a sensible
figure of merit for the data. A possible alternative figure of merit
for recombination is known from research on semiconductors
with primarily bimolecular recombination.[98–100] This is the case
for organic semiconductors, where it is common to calculate an
effective bimolecular recombination coefficient from transient or
steady state data. The advantage is that in the presence of strong
nonradiative recombination mechanisms that are quadratic in
electron or hole density, an effective recombination coefficient
is more likely to be constant with carrier density or Fermi-level
splitting than a decay time. Thus, sample-to-sample comparisons
become simpler.[98,101] In a steady-state situation, an effective re-
combination coefficient keff,cw could be defined via

keff ,cw =
Rcw

np
(30)

where Rcw is the total rate of recombination in a steady-state situ-
ation at an injection level given by a certain np-product. To come
up with a definition for a transient experiment, we start with a
simple differential equation of the form dn/dt=−kn2 and recover
k from n(t). Thus, a possible definition of the differential recom-
bination coefficient extracted from a transient experiment would
be kdiff = −(dn/dt)/n2. However, in practice, we need a definition
that (i) considers the fact that we have access to the lumines-
cence (which is proportional to np) and (ii) is robust against the
idea of photodoping that will lead to n ≠ p. Thus, we propose the
definition

kdiff = − 1
2
√
np

d ln
(
𝜙PL

)
dt

= − 1
2
√
np

d𝜙PL

dt𝜙PL
(31)

Here, we use only quantities that are either equal to or propor-
tional to the luminescence flux ϕPL. The geometric mean

√
np

of the free carrier densities can be inferred from the transient
PL data in the following way. By measuring the laser power and
considering the fraction of absorbed photons, it is possible to esti-
mate the initial carrier concentration directly after the laser pulse
has hit the sample. If we assume that recombination losses are
negligible during the laser pulse and if we further use the in-
formation that lead-halide perovskites have a doping density that
is orders of magnitude lower than carrier densities typically cre-
ated by a laser pulse during a transient PL experiment, the initial
value of n = p =

√
np is known within the accuracy of the mea-

surement of the laser power. Once recombination sets in and the
luminescence decays as a function of time, we can use the fact
that the luminescence is proportional to np, i.e., ϕPL∝np. Thus,
every order of magnitude decay in ϕPL, leads to a

√
10 decay in

the geometric mean
√
np of the carrier density. Thereby, the ge-

ometric mean of the carrier density can be determined at every
point of the decay in the same way that the Fermi-level splitting
can be determined. This statement holds true even if n ≠ p at
times after the pulse due to asymmetric trapping of electrons and
holes.
Using Equation (31), we can also determine an analytical ap-

proximation for the differential decay time for a high density of
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Figure 10. a)Differential decay time 𝜏diff for the trap energy EC – ET = 0.2 eV (fromFigure 7a) and its decomposition into its electron and hole components
n/Rn and n/Rn. b) The rates Rnt, Rpt, and Rrad, as defined in Equations (22)–(24), change over many orders of magnitude as a function of the quasi-Fermi
level splitting ΔEF during the transient. The insets illustrate the dominant rates during the three phases: i) dominant radiative recombination combined
with the filling of the trap by electrons at ΔEF > 1.35 eV. ii) The transition phase (1.35 < ΔEF > 1.2 eV) is defined by a reduced contribution of Rrad
and the fact that hole capture dominates over electron capture, i.e., Rpt > Rnt. Accordingly, the trap filling rate Rnt – Rpt (black dashed line, displayed as
absolute value) changes its sign from positive to negative. (iii) The final stage (ΔEF < 1.2 eV) is entirely determined by hole capture, and the capture of
electrons turns into the emission of electrons, i.e., Rnt (blue dashed line, displayed as absolute value) changes its sign from positive to negative.

shallow traps in the same logic as done for the differential decay
time in Equation (29). This leads to

kdiff ≈
1 + ke,rad𝜏pn1

𝜏p

√
n1NT

= 1

𝜏p

√
n1NT

+ ke,rad

√
n1
NT

(32)

Notably, the analytical approximation given by Equation (32)
gives a constant value independent of carrier density and Fermi-
level splitting. Figure 9b illustrates the impact of applying Equa-
tion (31) to the same simulated PL decays as used for the decay
times shown in Figure 9a. Now all parts of the decay time that
had the slope 𝜏diff∝exp (− ΔEF/(2kBT)) in Figure 9a, now end up
leading to kdiff = const in Figure 9b. Thus, both at high and low
Fermi-level splitting the numerical results for kdiff become con-
stant. For the higher Fermi level splittings the result is given by
radiative recombination (dotted yellow line) and for lower Fermi
level splittings, it is given by Equation (32) (dash-dotted line). In
the intermediate region, a transition between the two levels is vis-
ible that produces some overshoot effects (i.e., it goes above the
upper and below the lower of the two approximate results for high
and low Fermi level splitting). This notably implies that kdiff can
be both larger but also smaller (!) than the radiative recombina-
tion coefficient ke,rad. This is a phenomenon that is much unlike
the steady state situation, where radiative recombination always
marks the lower limit of the total recombination rate. This phe-
nomenon is related to the effect of photodoping (i.e., n ≠ p) and
will be explained in the following.
To explain the fact that the measured differential lifetime is

longer than the radiative lifetime, we must discuss how these
lifetimes depend on the actual rates. Equation (25) describes that
the differential lifetime 𝜏diff is composed of the inverse average
of an electron contribution n/Rn and a hole contribution p/Rp.
Figure 10a shows how these two quantities develop as a function
of the quasi-Fermi level splittingΔEF during one of the transients
from Figure 8 (EC – ET = 0.2 eV) and how they influence the dif-
ferential decay time 𝜏diff. Notably, both components are almost
equal in both regimes, where the decay time is proportional to

exp (−ΔEF/2kBT), namely forΔEF > 1.35 eV and forΔEF < 1.2 eV.
In the first regime, we have n ≈ p and the decay time is defined
by radiative recombination. Thus, we approximate Equation (25)
by

𝜏diff = 1
2

(
Rn

n
+
Rp

p

)−1

≈ 1
2

(
Rrad

n
+
Rrad

p

)−1

=
Rrad

n
(33)

The second regime is (ΔEF < 1.2 eV) is determined by the cap-
ture of holes into the trap while there is only a small number of
free electrons. This latter fact causes some numerical noise for
the electron contribution n/Rn (blue dashed curve in Figure 10a)
because its value is a quotient of very small numbers (albeit equal
to the hole contribution p/Rp, which is the quotient of two much
larger numbers).
Figure 10b shows the rates Rnt, Rpt, and Rrad for electron cap-

ture, hole capture, and for radiative recombination as defined in
Equations (22)–(24), as well as the difference Rnt – Rpt, which de-
scribes the filling of the trapwith electrons (ifRnt –Rpt > 0) as well
as it’s emptying (if Rnt – Rpt < 0). In phase (i) (ΔEF > 1.35), the
dominant rate is Rrad. Simultaneously, we observe the filling of
the trap (Rnt ≫ Rpt) by electrons. In the transition phase (ii) (1.35
< ΔEF > 1.2 eV), the contribution of Rrad (yellow dotted line) is
reduced and hole capture dominates over electron capture, i.e.,
Rpt > Rnt. Accordingly, the rate Rnt – Rpt (black dashed line, dis-
played as absolute value) changes its sign from positive to neg-
ative. At the same time, the rate for hole capture (green dashed
line) exceeds the radiative rate Rpt > Rrad, while the electron ki-
netics is still dominated by radiative recombination, i.e., Rnt >

Rrad. In this regime, the differential decay time in Figure 10a is
mostly determined by the electron contribution n/Rn. (iii) The
final phase (ΔEF < 1.2 eV) is entirely determined by hole cap-
ture, simultaneously, the capture of electrons turns into the emis-
sion of electrons, i.e., Rnt (blue dashed line, displayed as absolute
value) changes its sign from positive to negative. The small num-
ber of electrons emitted from the trap recombines radiatively,
leading to −Rnt ≈ Rrad.
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Figure 11. Analogous calculation to Figure 9, but for acceptor-like traps close to the valence band. a) Differential decay time 𝜏diff and b) recombination
coefficient k as a function of the quasi-Fermi level splitting ΔEF for a high trap density NT = 1018 cm−3 and the variation of the energetic trap position
ET relative to the nearest band. Solid lines represent the transients based on numeric calculations. The dotted lines show the decay for simple radiative
recombination. Dashed lines are derived from Equation (35). Simulation parameters can be found in Table 2.

In Figures 7 and 8, we highlighted the similarities and differ-
ences between simulations for acceptor-like defects above and
below midgap. In the case of transient simulations, we do the
same, whereby Figure 11 presents the analogous graphical rep-
resentation of acceptor-like defects below midgap to Figure 9,
which was showing the abovemidgap case. The differential decay
time shown in Figure 11a follows a behavior qualitatively simi-
lar to the one shown in Figure 6b. For high values of ΔEF, the
decay time follows a trend, where 𝜏diff ∝ exp(−ΔEF∕2kBT) as ex-
pected for radiative recombination. This trend transitions into a
constant decay time, i.e., an exponential decay toward lower val-
ues of ΔEF, whereby the trap depth defines the value of the de-
cay time. The recombination coefficients shown in Figure 11b
consequently show a constant value of kdiff = ke,rad for high ΔEF
whereas for low ΔEF, the recombination coefficient increases
monotonously. The take-home message from these simulations
is that shallow acceptor-like traps close to the valence band that
hold a significant amount of charge already in the dark are
unable to explain power-law decays over a wide range of ΔEF
values.
We derive an analytical equation for the lifetime plateau at low

ΔEF for this case. The acceptor-like state close to the valence band
significantly contributes to p-type doping of the semiconductor.
Thus, the equilibrium electron concentration is vanishing. The
charge neutrality p = nT and the assumption of an equilibrium
between trapping and detrapping of holes 𝛽ppnT = 𝛽pp1(NT−nT)
leads to a quadratic equation that can easily be solved
to

peq = −
p1
2

+
√

p12

4
+ p1NT (34)

With this constant hole density p, the second term of Equa-
tion (25) vanishes. When using Equation (22) under the assump-
tion of very low emission rate for electrons ennT it simplifies fur-
ther to

𝜏diff = −2
(
1
n
dn
dt

)−1

= 2
ke,radpeq + 𝛽n

(
NT − peq

) (35)

Interestingly, this equation also still holds for low trap
densities.
Toward the end of this largely theoretical chapter on the PL

decay in the presence of a high density of traps that leads to
photodoping, we briefly return to experimental data found in
the literature. For the data previously shown in Figure 4, we
can also provide the differential recombination coefficients kdiff
to illustrate the applicability of Equation (31) to experimental
data. All parts of the decay seen in Figure 4a that were perfectly
proportional to ϕPL ∼ t−2 will now end up being horizontal in
Figure 12. This is the case in particular for the MAPbI3 data
as well as for the lower ΔEF parts of the triple-cation and the
CsPbBr3 data. In contrast, the lower bandgap double cation per-
ovskite (CsFAPbI3) showed a decay that was power law but did
not scale with ϕPL ∼ t−2. Hence, for this sample (blue), kdiff de-

Figure 12. Recombination coefficient as a function of Fermi-level splitting
for the PL transients shown in Figure 4a. Any parts of the original decay
that are parallel to the dashed red line in Figure 4a that corresponds to the
ϕPL ∼ t−2 trajectory end up giving a constant value of kdiff. Any deviations
from that trajectory lead to a dependence of kdiff on carrier density or Fermi
level splitting. Figure reproduced from ref. [50] under the terms of the CC-
BY 4.0 license. © The authors of ref. [50].
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Figure 13. a) Differential decay time 𝜏diff and b) recombination coefficient kdiff as a function of the quasi-Fermi level splitting ΔEF for a shallow trap with
varied fluence Npulse of the excitation. Solid lines represent the transients based on numerical calculations, the dashed lines represent Equation (29)
and (32). The dash-dotted lines show the decay for simple radiative recombination. Simulation parameters can be found in Table 2.

viates significantly from the horizontal. However, compared to
the differential decay time data shown in Figure 4b, the recom-
bination coefficients are significantly more constant and there-
fore easier to compare. We note that the MAPbI3 sample was
made using a process leading to very luminescent films and so-
lar cells with open-circuit voltages of ≈1.26 V for a bandgap of
1.6 eV.[18,102] Thus, it is plausible that this sample shows the low-
est recombination coefficient. The triple-cation sample is dis-
cussed in more detail in ref. [52] was equally optimized for high
luminescence and high open-circuit voltages in devices, and it
is equally plausible that it has the second lowest recombina-
tion coefficients. The other two samples were not specifically
optimized but used as references to show the generality of the
effect.

6. Fluence Dependence

So far all simulations shown in the paper were performed assum-
ing a high fluence such that the differential decay times or recom-
bination coefficients would span as large a range in Fermi-level
splittings as possible. It is a valid question to ask how a varia-
tion in pulse fluence, as we have seen it already in the experi-
mental data shown in Figure 5 would affect the results. Figure 13
shows fluence-dependent simulations analyzed again in terms
of (a) the differential decay time and (b) the recombination co-
efficient. The simulations are performed assuming a trap that
is 0.1 eV below the conduction band edge, i.e., they correspond
to the black line in Figure 9. Lower fluence implies that the ini-
tial carrier concentration at time t = 0 (immediately after the
pulse) is lower. Thus, the decay times and recombination coef-
ficient cover a range of Fermi level splittings that is shifted to
the left of the figure and starts (on the right) at a lower maxi-
mum value of ΔEF. In addition, also the position of the jump
from the yellow dash-dotted line to the purple dashed line (third
phase in the discussion of Figure 9) shifts to lower values ofΔEF.
However, it is noteworthy that all pulse fluences eventually ap-
proximate the dashed purple line that represents Equations (29)
and (32).

7. Conclusions and Outlook

One of the central arguments why lead halide perovskites are
particularly suitable for photovoltaic and optoelectronic applica-
tions is that intrinsic defects are primarily shallow.[47,103] While
initial reports may have used unsuitable functionals for the DFT
calculations[47,71], the general idea remained valid.[48] Neverthe-
less, the possible abundance of shallow defects was often consid-
ered as a sidenote by the spectroscopy and device physics com-
munities that usually worked with deep defects to explain their
data. The idea was that in most halide perovskites, a small den-
sity of deep defects may dominate the overall recombination rate
despite a higher density of shallow defects and possibly mobile
ions being present. Recombination via defects was considered
to be generally linear in carrier density, leading to a high pop-
ularity of the so-called ABC model for explaining spectroscopic
data.[19] However, going back to the full equations for recom-
bination via defects in the SRH model[53,54] (or even the Sah-
Shockley model[104] for amphoteric defects) immediately shows
that recombination via defects can scale linearly or quadratic
(or anything in between) with carrier density. The actual behav-
ior of a given trap depends primarily on its energetic position
in the bandgap (shallow versus deep), its density (does it con-
tribute to the charge neutrality equation?), and its charge state
(does it dope the sample in the dark, under illumination, or ba-
sically never?). While the theory for the statistics of recombina-
tion in semiconductors is already more than seven decades old,
the application of that theory to the context of a near intrinsic
semiconductor[78] with significant densities of shallow traps,[52]

signs of photodoping[49] and power law decays[50] provides still
interesting physical insights into how to analyze steady state and
transient data sensitive to the recombination dynamics of the
sample. Given the popularity of the technique, the current re-
view focuses on photoluminescence-based techniques in steady
state (PL quantum yield as a function of light intensity) and in
the time domain.We proceed from situations of low to high com-
plexity and discuss how the SRHmodel, in combination with the
charge neutrality condition, results in different (approximate) re-
sults for the PL quantum yield and the PL decay. The central find-
ing is that the presence of shallow traps can be deduced from the

Adv. Energy Mater. 2025, 15, e03157 e03157 (17 of 21) © 2025 The Author(s). Advanced Energy Materials published by Wiley-VCH GmbH
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dependence of the respective data on the carrier density or the
Fermi-level splitting present for each recorded data point. Espe-
cially, in transient PL measurements, the observation of power-
law decays that coincide with PL quantum yields significantly
lower than 1 can easily be explained by recombination via shallow
traps.
Future developments related to shallow traps and photodoping

might involve strategies to directly access the electron and hole
densities independently, which could be done, for instance, with
photo-Hall measurements.[83,105] Furthermore, trapping and de-
trapping kinetics could be studied by adding additional degrees
of freedom to the measurement. One approach previously dis-
cussed is the variation of fluence and repetition rate in the form
of the so-calledHorse plots[19,106] or alternatively the combination
of very high and very low repetition rates in the form of pulse-
burst measurements.[95,96] In case of the pulse burst measure-
ments, the filling of traps results in a rise of the PL intensity dur-
ing the burst phase (many pulses shortly after each other). After
the burst phase is over, the PL slowly decays via recombination.
As this measurement can also be done as a function of fluence
and possibly temperature, it opens up more degrees of freedom
than a traditional measurement with a fixed repetition rate would
offer. Additional insights may also be accessible from systematic
comparisons between different transient measurements that are
sensitive to either the product or the sum of the electron and hole
densities. One of the earliest papers that specifically talked about
photodoping in halide perovskites was from Feldmann et al.[49]

and used the combination of tr-PL and transient absorption spec-
troscopy as the key experimental insight to establish the existence
of systematically different recombination dynamics between dif-
ferent samples. In the context of data analysis, the present paper
focuses on analytical descriptions of PL and tr-PL that are useful
to better understand the fundamental behavior of shallow ver-
sus deep traps. However, there may be situations where analyti-
cal equations are insufficiently complex to explain experimental
observations. In this case, either numericalmodelsmust be fitted
to the data[18] or the data analysis has to be done in the form of
Bayesian parameter estimation[107–111] to quantify the likelihood
of a certain set of parameters and a certain model to describe the
data. Such approaches will help to quantify confidence in the re-
sult and will be able to help in quantifying the complementarity
of different methods.
With respect to theoretical calculations of defect energy lev-

els and recombination coefficients, we observe an interest-
ing situation. Since the first publications from Yanfa Yan and
coworkers,[46,47] many theoretical papers have highlighted the
presence of shallow defects as an important feature of halide
perovskites (see, e.g., the discussion in ref. [48] and references
therein). However, the shallow defects that are featured in many
theoretical studies are rather acceptor-like defects close to the
valence band and donor-like defects close to the conduction
band.[75,112] As these types of defects would lead to significantly
different recombination kinetics than the one frequently ob-
served (a power law in tr-PL over many orders of magnitude),
it would be important to focus on the identification of point de-
fects that could explain the observation of recombination kinetics
consistent with shallow defects that are uncharged in thermo-
dynamic equilibrium. An example of such a defect is shown in
Figure 2a, but as this is a specific hydrogen vacancy in a formami-

diniummolecule, it is unlikely to be able to explain experimental
observations discussed in this review that cover various compo-
sitions that do not include formamidinium.
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